≜UCL

FIRST RESULTS OF DRIFT SIMULATIONS OF 'MULTI-BAND' STRUCTURES IN SPACECRAFT OBSERVATIONS OF INNER MAGNETOSPHERE PLASMA ELECTRONS AND IONS

Kirthika Mohan¹, A.N. Fazakerley¹, C.J. Owen¹, I. Dandouras² and L.M. Kistler³

¹ Mullard Space Science Laboratory, University College London, Holmbury St.Mary, Dorking, RH5 6NT

² IRAP (CNRS), Université de Toulouse, Toulouse, France

³ Space Science Centre, Morse Hall, University of New Hampshire, Durham, NH, USA

What are 'Bands'?

BANDS IN DOUBLE STAR TC-1 DATA

Bands: Features in particle energy-time spectra between 100 eV – 10's keV. Multi-bands refer to 2 or more bands.

Noses (yellow box): Ends of Bands.

Fig. DS TC-1 PEACE Electron energy-time spectra for 25th March 2004 showing multi-bands.

Fig. DS TC-1 HIA lon energy-time spectra for 25th March 2004 showing multi-banded structures.

BANDS – A CONSEQUENCE OF DRIFTS? **UCL**

field model.

SIMULATING NOSE STRUCTURES

Simulate QUIET STEADY STATE magnetosphere.

Input Parameters - Particles: Pitch angle = 90, Energy 0.1 – 30 keV

- Geomagnetic Activity: Kp = 0
- Position of particle input: L = 10, MLT = 20-4

Fig. Energy-L spectra showing a single nose structure formed as a consequence of particle drifts. This is similar to what we see for all MLT cuts in both ions and electrons.

How are Multi-banded Structures formed? **AUCL**

OTHER EXPLANATIONS - BANDS ELECTRONS AND IONS

(Burke et al., 1995; Liemohn et al., 1998; Ejiri et al., 1980)

 Low Kp: Alfven layer further away from Earth
As Kp increases i.e. during a substorm, Alfven layer moves inwards and particle penetrates closer toward Earth.

3. After the substorm, as the K_p index decreases, the particle becomes trapped within the Alfven layer and follows closed drift path.

Bands – particles on closed drift paths seen as the spacecraft passes through the region

EXPLANATIONS FOR MULTI-BANDS

1.Superposition of old/new bands: **ELECTRONS** and **IONS** 2.Multiple injections

3.Nose/band structure split into 2 or more by spectral gaps due to loss of particles through:

- Charge Exchange : IONS (Vallat et al., 2007)
- Wave particle interactions : **ELECTRONS** and **IONS**

DOUBLE STAR TC-1 STATISTICAL SURVEY

DOUBLE STAR TC-1 Collaboration between China and ESA

Equatorial orbit - 570 \times 78 970 km with inclination 28.5° to the equator. Orbits over 2004-2007 - all MLT covered.

CODE to pick out banded features in Double Star Tan Ce-1 HIA ion and PEACE electron energy-time data summed over all pitch angles:

1.Peaks in 5-min averaged flux data 2.Flux of peak has to be at least 105% of background flux of the 5 min interval 3.BAND = consecutive peaks at Energies ± 1 energy channel for at least 30 MINUTES.

NOTE: Times of bad quality data were excluded from the survey.

(Presented in previous workshops/conferences)

26 JANUARY 2004 - 1/2 bands

Fig. DS TC-1 Observations of banded structures. The black crosses denote where CODE picks up banded structure.

Are band structures solely due to particles on closed paths?

Kp = 0 - 1; AE = 0 - 50 nT

Total = 196.0, R = 0.36

Total = 543, R = 0.62

Total = 234.9, R = 0.92

Closest open drift path to the Alfven layer is plotted on top of the statistics to show open and closed drift regimes.

Kp = 0 – 1; AE = 0 – 50 nT

Energy : 430 – 4974 eV

Closest open drift path to the Alfven layer is plotted on top of the statistics to show open and closed drift regimes.

Kp = 0 - 1; AE = 0 - 50 nT

Energy : 430 – 4974 eV

Kp = 1, E = 430 eV + Kp = 0, E = 4974 eV

CLOSEST OPEN DRIFT PATH SUPERPOSED ON FURTHEST OPEN DRIFT PATH

Closest open drift path to the Alfven layer is plotted on top of the statistics to show open and closed drift regimes.

Kp = 0 – 1; AE = 0 – 50 nT

Energy : 430 – 4974 eV

CLOSEST OPEN DRIFT PATH SUPERPOSED ON FURTHEST OPEN DRIFT PATH

Are band structures solely due to particles on closed paths?

Fig. Self-normalized distribution of electron multi-banded structures as a function of L and MLT and energy of the bands.

Are band structures solely due to particles on closed paths?

Total = 196.0, SNR = 0.36

BANDS ON OPEN DRIFT PATHS NOTE: SOME CLOSED ON BANANA ORBITS Total = 543.5, SNR = 0.62 Total = 234.9, SNR = 0.92

BANDS ON OPEN AND CLOSED DRIFT PATHS BANDS ON CLOSED DRIFT PATHS

CONCLUSIONS

1.Statistical analysis on DoubleStar TC-1 HIA and PEACE ion and electron data – Bands are most often observed in quiet times.

2.Statistics for energy of multi-bands with comparison to model Alfven layers:

- Multi-bands are largely found on closed paths or very slow open paths (Previously suggested).
- At Energy > ~6 keV (electrons) and ~12 keV (ions): Multi-bands are due to particles on closed drift paths.
- There are some cases at lower energies where multi-bands are clearly seen on open drift paths (Not highlighted previously).

FURTHER STUDY

- Investigate individual cases of low energy multi-bands on open paths; can we explain their origin multiple injections of low energy particles??
- Seek to further confirm global picture of drifting particles in different energy bands on closed paths using case studies with Cluster, TC-1 and TC2

Simulate QUIET STEADY STATE magnetosphere.

Simple drift trajectory model:

- Volland Stern Electric Field
- Dipole Magnetic Field

Input Parameters:

- L = 10 Re
- MLT = 20 4 in steps of 0.1
- Kp = 0
- Pitch Angle = 90
- Energies = 0.01 30 keV

Flux Grid to calculate fluxes

Are band structures solely due to particles on closed paths?

- 120 344 eV 430 – 4974 eV
- Kp = 0 7; AE = 0 3000 nT

6204 – 23748 eV

Total = 22.3, R = 0.12

Total = 340.2, R = 0.59 Total = 245.3, R = 0.99

STATS - IONS: ENERGY OF BANDS

Are band structures solely due to particles on closed paths?

- 127 302 eV 402 – 9266 eV
- Kp = 0 7; AE = 0 3000 nT

12322 – 28990 eV

Kp = 0 - 1; AE = 0 - 50 nT

Total = 46.7, R = 0.11

Simulate QUIET STEADY STATE magnetosphere.

Simple drift trajectory model:

- Volland Stern Electric Field
- Dipole Magnetic Field

Input Parameters:

- L = 10 Re
- MLT = 20 4 in steps of 0.1
- Kp = 0
- Pitch Angle = 90
- Energies = 0.01 30 keV

Simulate QUIET STEADY STATE magnetosphere.

Simple drift trajectory model:

- Volland Stern Electric Field
- Dipole Magnetic Field

Input Parameters:

- L = 10 Re
- MLT = 20 4 in steps of 0.1
- Kp = 0
- Pitch Angle = 90
- Energies = 0.01 30 keV

Flux Grid to calculate fluxes

Simulate QUIET STEADY STATE magnetosphere.

Simple drift trajectory model:

- Volland Stern Electric Field
- Dipole Magnetic Field

Input Parameters:

- L = 10 Re
- MLT = 20 4 in steps of 0.1
- Kp = 0
- Pitch Angle = 90
- Energies = 0.01 30 keV

Flux Grid to calculate fluxes MLT cut – Do we see a nose?

Simulate QUIET STEADY STATE magnetosphere.

- Volland Stern Flectric Field

SIMULATIONS – WE SEE A NOSE! AUCL

Fig. Simulated electron energy-L spectra showing single nose structures. We see similar results in the case of the ions.

SIMULATIONS – IONS: WHAT DO WE EXPECT TO SEE?

Closest open drift path to the Alfven layer is plotted on top of the statistics to show open and closed drift regimes.

Kp = 0 - 1; AE = 0 - 50 nT

Energy : 430 – 4974 eV

```
Kp = 7, E = 430 eV + Kp = 0, E = 4974 eV
```


CLOSEST OPEN DRIFT PATH SUPERPOSED ON FURTHEST OPEN DRIFT PATH