

C. A. Kletzing The University of Iowa

Acknowledgements

We would like to thank the Van Allen Probes instrument teams contributing to this talk:

C. A. Kletzing, W. S. Kurth, M. Acuna, R. J. MacDowall, R. B. Torbert, T. Averkamp, D. Bodet, S. R. Bounds, M. Chutter, J. Connerney, D. Crawford, J. Dolan, R. Dvorsky, G. Hospodarsky, J. Howard, V. Jordanova, R. Johnson, D. Kirchner, B. Mokrzycki, G. Needell, J. Odom, D. Mark, J. Phillips. C. Piker, S. Remington, O. Santolik, R. Schnurr, D. Sheppard, C. W. Smith, R. M. Thorne, J. Tyler, and the extended Van Allen Probes EMFISIS team

John Wygant, Cynthia Cattell, John Bonnell, Forrest Mozer, Chris Chaston, Stuart Bale, Robert Ergun, Daniel Baker, Xin-Lin Li, Mary Hudson, Robert Strangeway, John Foster, Jay Albert, Ian Mann, Eric Donovan, John Dombeck, Chris Cully, Volodya Krasnosselskikh, David Malaspina, Guanqing Yan, Aaron Breneman, Jianbao Tao, Kris Kersten, Xiangwei Tang, Thiago Brit, Zhao Li, and the extended EFW team.

Harlan Spence, Geoff Reeves, Herb Funsten, Bern Blake, Dan Baker, Richard Thorne, Anthony Chan, Jim Clemmons, Scot Elkington, Joe Fennell, Reiner Friedel, Jerry Goldstein, Mike Henderson, Mary Hudson, Jörg-Micha Jahn, Vania Jordanova, Shri Kanekal, Brian Larsen, Xinlin Li, Liz MacDonald, Paul O'Brien, Ruth Skoug, Michelle Thomsen, and the extended RBSP-ECT Science Team

'HE UNIVERSITY OF IOWA

EMFISIS Data Example (5-15-2013)

Pc1 Pearls

4

Ground-Space Correlation

Paulsson, et al, 2014

THE UNIVERSITY OF IOWA

Geopsace: Revisited - Sept, 2014

5

Rising Tone Magnetosonic Waves

From March 3, 2014.

From S.Boardsen, GSFC and G. Hospodaarsky, UI

HE UNIVERSITY OF IOWA

Both Spacecraft

From March 3, 2014

THE UNIVERSITY OF IOWA

Hiss Growth

RBSP-A shows growth at very low frequencies

Northward Away Case

RBSP-A/EMFISIS HFR Spectra Data

2013-07-27 (208) 11:38 to 20:36 (orbit:rbspa-pp:886)

THE UNIVERSITY OF IOWA

Southward Away Case

RBSP-A/EMFISIS HFR Spectra Data

THE UNIVERSITY OF IOWA

Skimming Plasmapause Case

Poynting Flex vs Mlat

THE UNIVERSITY OF IOWA

Electrons Producing Chorus?

Electrons with energy above ~20 keV don't seem well-correlated

THE UNIVERSITY OF IOWA

Wave Normal Direction

Wave normal can be quite oblique HE UNIVERSITY OF IOWA

Wave-particle interaction

Parallel propagation, non-relativistic

Whistler mode Dispersion relation:

$$\frac{k^2 c^2}{\omega^2} = 1 + \frac{\omega_{pe}^2}{\omega(\omega_{ce}\cos\theta - \omega)}$$

Resonance Condition:

$$\omega - k_{||} v_{||} = \omega_{ce}$$

Resonant

Energy:

THE UNIVERSITY OF IOWA

Wave Direction and Resonance

Example resonance curves from Chum, et al. [2007].
Oblique wave normal lowers resonance energy.
THE UNIVERSITY OF IOWA Geopsace: Revisited - Sept. 2014

Electron Resonant Energy

Testing Cold Plasma Dispersion

Comparing measured wave magnetic field to calculated value.

Conclusions

- Van Allen Probes continue to return outstanding data
- EMIC "Pearls" suggest structure is from generation region, not bouncing wave packets.
- Plasmaspheric hiss can be very low frequency.
- Poynting flux direction of plasmaspheric hiss suggests that most hiss is locally generated in the plasmasphere.
- Largest amplitude hiss, however, may not be locally generated.
- Chorus generation appears to be from electrons with energies less than 100 keV at most.
- Initial results show cold plasma theory generally works well.

emfisis.physics.uiowa.edu

E UNIVERSITY OF IOWA

That's all folks!

