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Presentation Notes
We are so excited to work with a great team to share the excitement of the Radiation Belt Storm Probes. Van Allen Belts are really exciting because they’re mysterious and dangerous. They still hold mysteries even though they were one of the first space age discoveries back in 1958. they are filled with killer electrons and intense high energy protons moving at the speed of light. This mission is also exciting because finding out the mysteries it has incredibly practical benefits to people here on the ground. 
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EMFISIS Data Example 
(5-15-2013) 
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Pc1 Pearls 

Geopsace: Revisited - Sept, 2014 



THE UNIVERSITY OF IOWA 5 

Ground-Space Correlation 
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Paulsson,et al, 2014 
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Rising Tone Magnetosonic Waves 
From March 3, 2014. 
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From S.Boardsen, GSFC and G. Hospodaarsky, UI 
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Both Spacecraft 
From March 3, 2014 
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Hiss Growth 
RBSP-A shows growth at very low frequencies 
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Northward Away Case 
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Southward Away Case 
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Skimming Plasmapause Case 
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Poynting Flex vs Mlat 
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Electrons Producing Chorus? 
Electrons with energy above ~20 keV don’t seem well-correlated 
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Wave Normal Direction 

Wave normal can be quite oblique 
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Wave-particle interaction 

Parallel propagation, non-relativistic 
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Whistler mode 
Dispersion relation: 

Resonant  
Energy: 

Resonance 
Condition: 

𝑘𝑘2𝑐𝑐2

𝜔𝜔2 = 1 +  
𝜔𝜔𝑝𝑝𝑝𝑝2

𝜔𝜔 𝜔𝜔𝑐𝑐𝑝𝑝cos𝜃𝜃 − 𝜔𝜔
 

2𝐸𝐸
𝑚𝑚𝑐𝑐2

=
𝜔𝜔𝑐𝑐𝑝𝑝 − 𝜔𝜔 2(𝜔𝜔𝑐𝑐𝑝𝑝cos𝜃𝜃 − 𝜔𝜔)

ωcos2𝜃𝜃 (𝜔𝜔ω𝑝𝑝𝑝𝑝cos2𝜃𝜃 −  𝜔𝜔2 +  ω𝑝𝑝𝑝𝑝
2)

 

𝜔𝜔 −  𝑘𝑘||𝑣𝑣|| = 𝜔𝜔𝑐𝑐𝑝𝑝 
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Wave Direction and Resonance 

 Example resonance curves from Chum, et al. [2007]. 
 Oblique wave normal lowers resonance energy. 
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Electron Resonant Energy 
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Testing Cold Plasma Dispersion 
Comparing measured wave magnetic field to calculated value. 

Geopsace: Revisited - Sept, 2014 



THE UNIVERSITY OF IOWA 19 

Conclusions 
 Van Allen Probes continue to return outstanding data 
 EMIC “Pearls” suggest structure is from generation region, 

not bouncing wave packets. 
 Plasmaspheric hiss can be very low frequency. 
 Poynting flux direction of plasmaspheric hiss suggests that 

most hiss is locally generated in the plasmasphere. 
 Largest amplitude hiss, however, may not be locally 

generated.  
 Chorus generation appears to be from electrons with 

energies less than 100 keV at most.  
 Initial results show cold plasma theory generally works well. 

 emfisis.physics.uiowa.edu 
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That’s all folks! 
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